期刊文章详细信息
文献类型:期刊文章
机构地区:[1]河北大学数学与计算机学院机器学习研究中心,保定071002
年 份:2006
卷 号:42
期 号:7
起止页码:152-155
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、ZGKJHX、核心刊
摘 要:基于Min-Ambiguity启发式算法的模糊决策树整个建立过程均是在给定的一个显著性水平参数基础上进行,该参数值的选择对于模糊决策树性能将产生重要影响。文章通过实验研究表明,在某一特定取值区间内,随着该参数值的逐步增大,可以使得模糊决策树在保持提高测试精度的前提下,使树的规模逐步减小,直至到达该参数的最优值,使树成为测试精度达到最优而树规模达到最小的一棵。而再度增大的此参数值(已超出该区间)却会导致树的过度剪枝,使树的测试精度降低。最后,通过相同数据在清晰决策树系统(C4.5系统)后剪枝前后的比较试验进一步证实,在该区间内,逐步增大的此参数值对模糊决策树性能的影响等效于清晰决策树的后剪枝。
关 键 词:模糊决策树 清晰决策树 后剪枝 模糊熵 分类不确定性
分 类 号:TP311]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...