期刊文章详细信息
文献类型:期刊文章
机构地区:[1]南京师范大学计算机系,江苏南京210097 [2]苏州大学省计算机信息处理重点实验室,江苏苏州215006
基 金:江苏省重点实验室开放基金(KJS03064)资助.
年 份:2006
卷 号:27
期 号:1
起止页码:110-113
语 种:中文
收录情况:AJ、BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:关联规则挖掘常常会产生大量的规则,这使得用户分析和利用这些规则变得十分困难,尤其是数据库中属性高度相关时,问题更为突出.为了帮助用户做探索式分析,可以采用各种技术来有效地减少规则数量,如约束性关联规则挖掘、对规则进行聚类或泛化等技术.本文提出一种关联规则冗余删除算法ADRR和一种关联规则聚类算法ACAR.根据集合具有的性质,证明在挖掘到的关联规则中存在大量可以删除的冗余规则,从而提出了算法ADRR;算法ACAR采用一种新的用项目间的相关性来定义规则间距离的方法,结合DBSCAN算法的思想对关联规则进行聚类.最后将本文提出的算法加以实现,实验结果表明该算法是有效可行的,且具有较高的效率.
关 键 词:关联规则 相关性 聚类
分 类 号:TP311]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...