登录    注册    忘记密码

期刊文章详细信息

统计模式识别中的维数削减与低损降维  ( EI收录)  

Dimensionality Reduction in Statistical Pattern Recognition and Low Loss Dimensionality Reduction

  

文献类型:期刊文章

作  者:宋枫溪[1] 高秀梅[2] 刘树海[3] 杨静宇[4]

机构地区:[1]哈尔滨工业大学深圳研究生院,深圳518000 [2]淮阴师范学院计算机系,淮阴223001 [3]炮兵学院二系,合肥230031 [4]南京理工大学计算机系,南京210094

出  处:《计算机学报》

年  份:2005

卷  号:28

期  号:11

起止页码:1915-1922

语  种:中文

收录情况:BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:2005509589883)、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:较为全面地回顾了统计模式识别中常用的一些特征选择、特征提取等主流特征降维方法,介绍了它们各自的特点及其适用范围,在此基础上,提出了一种新的基于最优分类器———贝叶斯分类器的可用于自动文本分类及其它大样本模式分类的特征选择方法———低损降维.在标准数据集Reuters-21578上进行的仿真实验结果表明,与互信息、χ2统计量以及文档频率这三种主流文本特征选择方法相比,低损降维的降维效果与互信息、χ2统计量相当,而优于文档频率.

关 键 词:维数削减  特征选择  特征抽取 低损降维  文本分类

分 类 号:TP18]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心