期刊文章详细信息
文献类型:期刊文章
机构地区:[1]大连舰艇学院航海系,辽宁大连116018
年 份:2005
卷 号:33
期 号:10
起止页码:1914-1916
语 种:中文
收录情况:BDHX、BDHX2004、CAS、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:2006029637146)、IC、INSPEC、JST、RCCSE、RSC、SCOPUS、ZGKJHX、核心刊
摘 要:为了解决神经网络(NN)在数据融合过程中权值实时更新问题,依据神经元激活函数的非线性特点,提出了一种利用Unscented卡尔曼滤波(UKF)实现神经网络权系数自适应调整的模型及方法,从而使全局融合信息最优.并分别以仿真数据及DGPS/GPS/RLC/罗经等设备组成的舰船导航系统实测数据为例,首先对各局部滤波器进行UKF滤波,然后分别利用神经网络卡尔曼滤波(NNKF)及神经网络非线性卡尔曼滤波(NNUKF)进行数据融合,仿真和试验结果表明,所提方案对提高整个系统的精度和运算速度是行之有效的.
关 键 词:信息融合 UKF 神经网络 组合导航 信息分配
分 类 号:O211.64]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...