期刊文章详细信息
文献类型:期刊文章
机构地区:[1]上海立信会计学院信息科学系,上海201600
基 金:国家自然科学基金(60275026);吉林省自然科学基金(200305171);上海市重点学科项目基金(P1601)资助
年 份:2005
卷 号:28
期 号:9
起止页码:1564-1569
语 种:中文
收录情况:BDHX、BDHX2004、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:2005419405754)、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:目前,具有已知结构的隐藏变量学习主要针对具有离散变量的贝叶斯网和具有连续变量的高斯网.该文给出了具有连续和离散变量的混合贝叶斯网络隐藏变量学习方法.该方法不需要离散化连续变量,依据专业知识或贝叶斯网络道德图中Cliques的维数发现隐藏变量的位置,基于依赖结构(星形结构或先验结构)和Gibbs抽样确定隐藏变量的值,结合扩展的MDL标准和统计方法发现隐藏变量的最优维数.实验结果表明,这种方法能够有效地进行具有已知结构的混合贝叶斯网络隐藏变量学习.
关 键 词:隐藏变量 混合贝叶斯网络 依赖结构 GIBBS抽样 MDL标准
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...