期刊文章详细信息
文献类型:期刊文章
机构地区:[1]南京邮电大学信息工程系,江苏南京210003
年 份:2005
卷 号:25
期 号:4
起止页码:30-35
语 种:中文
收录情况:SCOPUS、普通刊
摘 要:近年来,一种新的基于种群优化的算法———粒子种群优化(PSO)算法,正受到人们的普遍关注。首先介绍了PSO原理及具体实现步骤,接着对各种常见PSO算法,例如原始算法、惯性权值算法、限制因子算法等进行了解释。在此基础上,对PSO算法典型模型的参数选择,如惯性权值、加权系数、最大速度等,进行了详细研究,并给出了实验结果,得出了相关结论,为今后参数的选择提供了参考。接着讨论了PSO在神经网络、模糊逻辑系统和进化计算等计算智能领域及其它工程领域的应用,最后给出了进一步的研究方向。
关 键 词:粒子种群优化(PSO) 惯性权值 约束因子 计算智能 进化计算
分 类 号:TN911.7]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...