期刊文章详细信息
文献类型:期刊文章
机构地区:[1]赣南师范学院数学系
年 份:1995
卷 号:16
期 号:3
起止页码:124-128
语 种:中文
收录情况:普通刊
摘 要:本文给出了直接求职与的新公式。)式代入上式,整理即得(C为任意常数,m∈N)于是公式(3)得证。同样的方法可证公式(4),这里从略。定理3当m∈N时,有证明:注意到由定理1,作变量替换,立即可证得公式(6)、(7)。下面,略举数例说明上述定理的一些应用。例1证明证明:由公式(4),有。由公式(3),有于是问题得证。倒2求解:由公式(4),视m=3,直接可得:例3求解:由公式(6),视m=4,直接可得:例4求解:由公式(4),视m=100,直接可得例5证明函数(1)当n为奇数时为以2π为周期的函数;(2)当n为偶数时,是线性函数与周期函数的和。证明:(1)当n=1时,F(x)=-Cosx+1,G(x)=Sinx,显然都是以2π为周期的周期函数。一般地,当n=2 ̄m+1,m∈N时,分别由公式(3)、(7)可知,有因此,F(x+2πt)=F(x)G(x+2π)=G(x)所以,当n为奇数时,F(x),G(x)都是以2π为周期的周期函数,(2)当n为偶数时,令n=2 ̄m,m∈N,分别由公式(4)、(6),可知:因此,它们都是线性函数与周期函数的和,问题得证。通过以上例子可见,本文中的定理1、定理2所述公式,它作为常用?
关 键 词:不定积分 显示表达公式 积分
分 类 号:O172.2[数学类]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...