期刊文章详细信息
文献类型:期刊文章
机构地区:[1]西北工业大学航天学院,西安710072
基 金:国家自然科学基金(10402034);教育部博士点基金(20030699025);西北工业大学博士论文创新基金(CX200302)
年 份:2005
卷 号:26
期 号:3
起止页码:380-384
语 种:中文
收录情况:BDHX、BDHX2004、CAS、CSA-PROQEUST、CSCD、CSCD2011_2012、EI(收录号:2005339305607)、IC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:扩展Kalman滤波(EKF)是应用最广的非线性估计方法,然而它存在实现性差、计算量大、估计精度低等缺陷,这些问题起源于EKF采用了Taylor展开近似。在阐明非线性估计的本质,剖析EKF等传统方法的特点及缺陷的基础上,从非线性估计革新的两条发展思路———非Taylor展开的线性变换及非线性变换出发,分别对插值滤波、Unscented滤波、粒子滤波和神经网络滤波这四种近年来最具特色的新方法进行介绍和评述。通过分析这些方法的工作原理、性能特点、必要性和可行性,将非线性估计最新进展的思想传承、本质内涵、地位与作用予以展现,指出各方法的现存问题、发展潜力和最具可实现性的发展方向。同时强调了各种算法的选取须根据具体应用场合和条件,在主要性能指标之间综合权衡。
关 键 词:非线性估计 插值滤波 Unscented滤波 粒子滤波 神经网络滤波
分 类 号:TP274]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...