期刊文章详细信息
文献类型:期刊文章
机构地区:[1]西安电子科技大学电路CAD研究所,376信箱西安710071
基 金:国家自然科学基金(No.60172004);北京大学视觉与听觉信息处理国家重点实验室基金(No.2001-03);博士点基金项目(20010701003)
年 份:2004
卷 号:31
期 号:5
起止页码:198-200
语 种:中文
收录情况:BDHX、BDHX2000、CSA、CSCD、CSCD2011_2012、IC、JST、RCCSE、UPD、ZGKJHX、核心刊
摘 要:根据图像边缘灰度的渐变性,我们重新定义SUSAN(Small Univalue Segment Assimilating Nucleus)算法中小核值相似区;并找到一种更为有效和简便的计算小核值相似区面积的方法;在此基础上提出了RSUSAN(Redefined SUSAN)角点检测算法。与经典的角点检测算法SUSAN、MIC(Minimum Intensity Change)相比,RSUSAN具有角点检测准确性高。计算简单,运算速度大为提高等优点。对于模糊、噪声大的图像本文还进一步提出了采用自适应平滑和RSUSAN相结合的方法,称为自适应RSUSAN算法。实验证明,相比较SUSAN、MIC算法而言,自适应RSUSAN算法没有显著地增加计算量,而且在对模糊、噪声大的图像进行角点检测时,虚报及漏检概率大大减少,对噪声的鲁棒性好,角点检测位置精确。
关 键 词:自适应RSUSAN 角点检测算法 图像边缘灰度 渐变性 图像 噪声 鲁棒性
分 类 号:TP391.41]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...