期刊文章详细信息
文献类型:期刊文章
机构地区:[1]吉林大学计算机科学与技术学院,吉林长春130025 [2]东北师范大学计算机系,吉林长春130024
基 金:国家自然科学基金项目 ( 60 2 75 0 2 6)资助
年 份:2004
卷 号:25
期 号:6
起止页码:968-971
语 种:中文
收录情况:AJ、BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、IC、INSPEC、JST、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:分类能力是人类经过学习得到的重要而基本的能力 ,也是机器学习、模式识别和数据采掘研究的核心问题 .在0 - 1损失率下 ,证明了基于类约束的贝叶斯网络分类器是最优分类器 .建立该分类器的核心问题是基于类约束属性贝叶斯网络结构学习 ,给出了学习属性贝叶斯网络结构的方法 ,在学习过程中使用了根据弧方向因果语义确定边方向的方法 ,并和碰撞识别定向相结合 ,在边定向之后进行冗余弧检验 ,解决了目前冗余边检验在定向之前所导致的问题 ,显著提高了结构学习效率和准确性 .并使用模拟数据进行了分类实验和分析 .
关 键 词:贝叶斯网络分类器 0-1损失率 因果语义 碰撞识别
分 类 号:TP391]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...