期刊文章详细信息
文献类型:期刊文章
机构地区:[1]北京交通大学信息科学研究所 [2]北京三星通信技术研究所,北京100081 [3]河北建设集团有限公司,保定071000
基 金:国家自然科学重点基金 (697893 0 1);国家"九七三"重点基础研究发展规划项目基金 (G19980 3 0 5 0 11)资助
年 份:2004
卷 号:27
期 号:5
起止页码:715-719
语 种:中文
收录情况:BDHX、BDHX2000、CSA、CSA-PROQEUST、CSCD、CSCD2011_2012、EI、IC、INSPEC、JST、MR、RCCSE、SCOPUS、ZGKJHX、核心刊
摘 要:当训练集的规模很大特别是支持向量很多时 ,支持向量机的学习过程需要占用大量的内存 ,寻优速度非常缓慢 ,这给实际应用带来了很大的麻烦 .该文提出了一种针对大规模样本集的学习策略 :首先用一个小规模的样本集训练得到一个初始的分类器 ,然后用这个分类器对大规模训练集进行修剪 ,修剪后得到一个规模很小的约减集 ,再用这个约减集进行训练得到最终的分类器 .实验表明 ,采用这种学习策略不仅大幅降低了学习的代价 ,而且这样获得的分类器的分类精度完全可以与直接通过大规模样本集训练得到的分类器的分类精度相媲美 ,甚至更优 ,同时分类速度也得到大幅提高 .
关 键 词:支持向量机 学习策略 大规模训练集 分类器
分 类 号:TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...