期刊文章详细信息
文献类型:期刊文章
机构地区:[1]南京理工大学计算机科学系,南京210094
基 金:国家自然科学基金 (6 0 0 72 0 34)资助~~
年 份:2003
卷 号:29
期 号:4
起止页码:481-493
语 种:中文
收录情况:BDHX、BDHX2000、CSCD、CSCD2011_2012、EI(收录号:2003457718600)、INSPEC、JST、MR、SCOPUS、ZGKJHX、ZMATH、核心刊
摘 要:Fisher线性鉴别分析已成为特征抽取的最为有效的方法之一 .但是在高维、小样本情况下如何抽取Fisher最优鉴别特征仍是一个困难的、至今没有彻底解决的问题 .文中引入压缩映射和同构映射的思想 ,从理论上巧妙地解决了高维、奇异情况下最优鉴别矢量集的求解问题 ,而且该方法求解最优鉴别矢量集的全过程只需要在一个低维的变换空间内进行 ,这与传统方法相比极大地降低了计算量 .在此理论基础上 ,进一步为高维、小样本情况下的最优鉴别分析方法建立了一个通用的算法框架 ,即先作K L变换 ,再用Fisher鉴别变换作二次特征抽取 .基于该算法框架 ,提出了组合线性鉴别法 ,该方法综合利用了F S鉴别和J Y鉴别的优点 ,同时消除了二者的弱点 .在ORL标准人脸库上的试验表明 ,组合鉴别法所抽取的特征在普通的最小距离分类器和最近邻分类器下均达到 97%的正确识别率 ,而且识别结果十分稳定 .
关 键 词:FISHER鉴别准则 线性鉴别分析 FoleySammon线性鉴别分析 组合线性鉴别分析 高维小样本问题 人脸识别
分 类 号:TP391.4]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...