专利详细信息
文献类型:专利
专利类型:发明专利
是否失效:否
是否授权:否
申 请 号:CN201510752590.8
申 请 日:20151106
申 请 人:重庆科技学院
申请人地址:400023 重庆市沙坪坝区大学城东路20号
公 开 日:20171205
公 开 号:CN105447567B
代 理 人:陈千
代理机构:50216 重庆为信知识产权代理事务所(普通合伙)
语 种:中文
摘 要:本发明提供了一种基于BP神经网络与MPSO算法的铝电解节能减排控制方法,首先,利用BP神经网络对铝电解生产过程进行建模,然后,利用基于多目标粒子群算法对生产过程模型进行优化,得到各决策变量的一组最优解以及该最优解对应的电流效率、吨铝能耗以及全氟化物排放量。MPSO算法不需要进行交叉、变异操作,因此编码过程简单、容易实现,且与其他算法相比,MPSO算法具有记忆性,即保留了所有全局最优值和局部最优值,保证了在种群进化过程中最优取值的完整性。该方法确定了铝电解生产过程中工艺参数的最优值,有效提高了电流效率,降低了吨铝能耗,减少了温室气体排放量,真正达到节能减排的目的。
主 权 项:1.一种基于BP神经网络与MPSO算法的铝电解节能减排控制方法,其特征在于,包括如下步骤:S1:选择对电流效率、吨铝能耗以及全氟化物排放量有影响的控制参数构成决策变量X=[x1,x2,…,xM],M为所选参数的个数;S2:选定铝电解工业现场,采集N组决策变量X1,X2,…,XN及其对应的电流效率y1,y2,…,yN、吨铝能耗z1,z2,…,zN以及全氟化物作s1,s2,…,sN为数据样本,以每一个决策变量Xi作为输入,分别以对应的电流效率yi、吨铝耗能zi以及全氟化物si作为输出,运用BP神经网络对样本进行训练、检验,建立铝电解槽生产过程模型;S3:利用多目标粒子群算法,即MPSO算法,对步骤S2所得的三个生产过程模型进行优化,得到一组最优决策变量Xbest及其对应的电流效率ybest、吨铝能耗zbest以及全氟化物sbest;S4:按照步骤S3所得的最优决策变量Xbest中的控制参数来控制步骤S2中所选定的铝电解工业现场,使其达到节能减排;MPSO算法包括以下步骤:S31:评价每个粒子的适应度,并根据优劣对个体最优值和全局最优值进行替换:S311:初始化系统参数,包括种群规模R,最大迭代次数T,随机生成n个粒子x1,x2,…,xn,加速因子c1、c2,其中c1为粒子向个体极值移动的加速权重,c2为粒子向全局最优值移动的加速权重,令外部存档集Q为空;S312:计算初始适应度,衡量粒子在当前位置的优化程度;S313:将每个粒子当前适应度pi和个体最优适应度
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...