登录    注册    忘记密码

专利详细信息

基于声音信号的天然气管道微泄漏检测方法       

文献类型:专利

专利类型:发明专利

是否失效:

是否授权:

申 请 号:CN201510963312.7

申 请 日:20151221

发 明 人:利节 陈国荣 吴韩 冯骊骁 李忠 陈梦良 高铮

申 请 人:重庆科技学院

申请人地址:400023 重庆市沙坪坝区大学城东路20号

公 开 日:20160504

公 开 号:CN105546352A

代 理 人:陈千

代理机构:重庆为信知识产权代理事务所(普通合伙)

语  种:中文

摘  要:本发明提供了一种基于声音信号的天然气管道微泄漏检测方法,将管道微泄漏时波动最强烈的声音信号作为主信号,将温度、压力、流量信号作为次信号,建立基于多参数的深度卷积神经网络,通过学习主信号和次信号的数据来确定天然气管道微泄漏概率,此外,针对多参数数据的异构性,设计一个深度受限玻尔兹曼机模型,对多参数数据进行预训练,获得最优权值矩阵和最优偏置值,作为深度卷积神经网络模型的权重初始值和偏置值初始值,该方法大大提高了管道微泄漏事故判定的准确率,降低了大型安全事故的发生,提高天然气管道事故抢险效率。

主 权 项:1.一种基于声音信号的天然气管道微泄漏检测方法,其特征在于,包括如下步骤:S1:采集天然气管道微泄漏时的声音信号以及温度、压力、流量信号;S2:对声音信号进行特征提取和去噪的预处理;S3:设计一个深度受限玻尔兹曼机模型,对步骤S2预处理后的声音信号以及步骤S1采集到的温度、压力、流量信号的进行预训练,获得最优权值矩阵和最优偏置值,作为深度卷积神经网络模型的权重初始值和偏置值初始值;S4:将步骤S3得到的最优权值矩阵和最优偏置值作为权重初始值和偏置值初始值,建立四层深度卷积神经网络模型,并利用该模型对天然气管道的微泄漏状况进行监测,其中,所述四层深度卷积神经网络模型包括一个输入层、两个隐藏层和一个输出层,输入层所输入的主信号为预处理后的声音信号,次信号为温度、压力和流量信号,输出层所输出的信号为天然气管道微泄漏概率,每个隐藏层均由卷积和下采样函数组成。

关 键 词:微泄漏  天然气管道 多参数  卷积神经网络  次信号  偏置值  安全事故  检测方法  流量信号  深度受限  最优权值  矩阵和 异构性 预训练  主信号  准确率  权重  一种  最优  判定  抢险 概率  设计  确定  学习  建立  进行  

IPC专利分类号:F17D5/00(20060101);F17D5/02(20060101);F17D5/06(20060101)

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心