专利详细信息
文献类型:专利
专利类型:发明专利
是否失效:否
是否授权:否
申 请 号:CN201611003680.8
申 请 日:20161114
申 请 人:重庆科技学院
申请人地址:401331 重庆市沙坪坝区大学城东路20号
公 开 日:20170531
公 开 号:CN106777468A
代 理 人:王玉芝;杨明
代理机构:重庆蕴博君晟知识产权代理事务所(普通合伙)
语 种:中文
摘 要:本发明提供的高含硫天然气脱硫工艺强跟踪演化建模方法,包括:选取影响脱硫效率的工艺参数和脱硫单元的性能指标;采集预设时间的所述工艺参数和所述性能指标的数据,剔除误差样本后形成样本集;对样本集进行归一化形成归一化样本集,并从中选取训练样本和测试样本;基于训练样本构建神经网络模型并确定神经网络模型的初始状态变量;用ST‑UKFNN算法估计神经网络模型的最优状态变量;将最优状态变量作为神经网络模型的连接权值和阈值,即获得权值阈值更新后的神经网络模型;将测试样本输入到更新后的神经网络模型,得到预测结果,将预测结果与测试样本中的实际输出进行比较,如果比较结果小于预设误差值,所构建的神经网络模型有效。
主 权 项:1.一种高含硫天然气脱硫工艺强跟踪演化建模方法,包括:步骤S1:选择影响脱硫效率的工艺参数和脱硫单元的性能指标;其中,所述工艺参数包括进入尾气吸收塔贫的胺液流量、进入二级吸收塔的贫胺液流量、原料气处理量、尾气单元返回脱硫单元的半富胺液流量、一级吸收塔胺液入塔温度、二级吸收塔胺液入塔温度、闪蒸罐压力、一个重沸器的蒸汽消耗量、另一个重沸器的蒸汽消耗量和蒸汽预热器的蒸汽消耗量;所述脱硫单元的性能指标包括净化气中H2S和CO2的浓度以及净化气的产量;步骤S2:采集预设时间的所述工艺参数和所述性能指标的数据,剔除误差样本后形成样本集[X,Y];步骤S3:对样本集[X,Y]进行归一化,形成归一化样本集
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...