登录    注册    忘记密码

专利详细信息

一种基于ScMiUKFNN算法的天然气净化工艺建模方法       

文献类型:专利

专利类型:发明专利

是否失效:

是否授权:

申 请 号:CN201810200655.1

申 请 日:20180312

发 明 人:辜小花 王甜 唐海红 张堃 宋鸿飞 张兴 侯松 裴仰军 李太福 邱奎

申 请 人:重庆科技学院

申请人地址:401331 重庆市沙坪坝区大学城东路20号

公 开 日:20180619

公 开 号:CN108182337A

代 理 人:王玉芝

代理机构:50223 重庆蕴博君晟知识产权代理事务所(普通合伙)

语  种:中文

摘  要:本发明公开了一种基于ScMiUKFNN算法的天然气净化工艺建模方法,包括以下步骤:步骤S1:选择影响脱硫效率的工艺参数和脱硫单元的性能指标;步骤S2:采集预设时间的所述工艺参数和所述性能指标的数据;步骤S3:形成归一化样本集,取所述归一化样本集中一部分作为训练样本,剩余部分作为测试样本;步骤S4:基于训练样本构建神经网络模型和所述神经网络模型的初始状态变量;步骤S5:利用ScMiUKFNN算法估计所述神经网络模型的最优状态变量;步骤S6:获得训练样本更新后的神经网络模型;步骤S7:得到预测结果,将预测结果与所述测试样本中的实际输出进行比较,如果比较结果小于预设误差值,神经网络模型有效;否则重复上述步骤至比较结果小于预设误差值。

主 权 项:1.一种基于ScMiUKFNN算法的天然气净化工艺建模方法,其特征在于,本方法包括以下步骤:步骤S1:选择影响脱硫效率的工艺参数和脱硫单元的性能指标;步骤S2:采集预设时间的所述工艺参数和所述性能指标的数据,剔除误差样本后形成样本集[X,Y];步骤S3:对样本集[X,Y]进行归一化,形成归一化样本集取所述归一化样本集中一部分样本作为训练样本,剩余部分的样本作为测试样本;步骤S4:基于所述训练样本构建神经网络模型和所述神经网络模型的初始状态变量θk,以及,将所述训练样本中的作为所述神经网络模型的输入,将所述训练样本中的作为所述神经网络模型的输出;所述神经网络模型为: 其中,为所述训练样本的矢量样本值,并作为所述神经网络模型的输入;zj作为所述神经网络模型的隐含层输出;

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心