登录    注册    忘记密码

期刊文章详细信息

基于深度迁移学习的小样本智能变电站电力设备部件检测  ( EI收录)  

Small Sample Smart Substation Power Equipment Component Detection Based on Deep Transfer Learning

  

文献类型:期刊文章

作  者:马鹏[1] 樊艳芳[1]

MA Peng;FAN Yanfang(School of Electrical Engineering,Xinjiang University,Urumqi 830047,Xinjiang Uygur Autonomous Region,China)

机构地区:[1]新疆大学电气工程学院,新疆维吾尔自治区乌鲁木齐市830047

出  处:《电网技术》

基  金:国家自然科学基金项目(51767023).

年  份:2020

卷  号:44

期  号:3

起止页码:1148-1159

语  种:中文

收录情况:AJ、BDHX、BDHX2017、CSCD、CSCD2019_2020、EI、IC、JST、PROQUEST、RCCSE、SCOPUS、ZGKJHX、核心刊

摘  要:随着人工智能的不断普及,智能变电站电力设备图像自动化检测系统的建立迫在眉睫。由于智能变电站电力设备图像数据集样本较少、场景复杂且电力设备部件相似度较高,传统图像检测算法无法对电力设备部件做到实时定位和准确识别。针对小样本目标检测识别难题,基于网络的深度迁移学习可以在不同数据集之间建立特征上的关联,能够较好地学习现有小样本智能变电站电力设备数据集的特征。该文采用迁移学习的方法,提出一种利用单阶段多框检测器(singleshotmultiboxdetector,SSD)的智能变电站电力设备图像目标检测算法,并根据智能变电站电力设备数据集相关特点添加特征提取层,重新设计特征预测框数量及比例,采用软性惩罚非极大值抑制(softpunishnon-maximum suppression,Soft-PNMS)等改进方法进行优化,能够自适应于小样本电力设备数据集的检测。此方法通过200张智能变电站电力设备训练集、50张智能变电站电力设备测试集,实现了在小样本复杂背景下对电力设备部件的分类和定位,验证了所提算法的有效性。研究结果表明,对于绝缘子、套管、电流互感器、油枕、螺帽5类电力设备,该方法的平均精准度达到了91.1%,比常规SSD卷积神经网络分类器平均精准度提高13%,平均漏检率下降3%,平均误识别率下降4‰,该方法为小样本电力设备智能化检测奠定了理论基础。

关 键 词:迁移学习  小样本检测  智能变电站 电力设备

分 类 号:TM63]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心