期刊文章详细信息
基于XGBoost-RFECV算法和LSTM神经网络的PEMFC剩余寿命预测
Prediction of PEMFC remaining life based on XGBoost-RFECValgorithm and LSTM neural network
文献类型:期刊文章
Chang Jiakang;Lyu Ning;Zhan Yuedong(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China;Computer Center,Kunming University of Science and Technology,Kunming 650500,China)
机构地区:[1]昆明理工大学信息工程与自动化学院,昆明650500 [2]昆明理工大学计算中心,昆明650500
基 金:国家自然科学基金(51667012)项目资助
年 份:2022
卷 号:36
期 号:1
起止页码:126-133
语 种:中文
收录情况:BDHX、BDHX2020、CSCD、CSCD2021_2022、EAPJ、JST、RCCSE、ZGKJHX、核心刊
摘 要:针对质子交换膜燃料电池(PEMFC)寿命预测方法中PEMFC特征对其寿命的影响程度未知和模型预测精度低的问题,提出一种基于XGBoost-RFECV算法和长短期记忆(LSTM)神经网络的PEMFC剩余寿命预测方法。首先通过等间隔采样和SG卷积平滑法对PEMFC原始数据进行重构和平滑处理,有效提取PEMFC退化趋势。然后利用XGBoost-RFECV算法计算PEMFC不同特征的重要度,并选择平均交叉验证均方误差最小的10个PEMFC特征组成最优特征子集。最后将最优特征子集输入构建的双层LSTM神经网络实现PEMFC的剩余寿命预测。实验结果表明,该方法的平均绝对误差和均方根误差分别为0.0019和0.0025,决定系数R^(2)为0.974,与XGBoost-RNN、XGBoost-LSTM和XGBoost-RFECV-RNN方法相比预测精度更高,能够有效地预测PEMFC剩余寿命。
关 键 词:XGBoost-RFECV算法 LSTM神经网络 PEMFC 剩余寿命
分 类 号:TM911.4] TP18]
参考文献:
正在载入数据...
二级参考文献:
正在载入数据...
耦合文献:
正在载入数据...
引证文献:
正在载入数据...
二级引证文献:
正在载入数据...
同被引文献:
正在载入数据...