登录    注册    忘记密码

期刊文章详细信息

自适应混合高斯建模的高效运动目标检测    

Efficient moving targets detection based on adaptive Gaussian mixture modelling

  

文献类型:期刊文章

作  者:刘伟[1] 郝晓丽[1] 吕进来[1]

Liu Wei;Hao Xiaoli;Lyu Jinlai(College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600,China)

机构地区:[1]太原理工大学信息与计算机学院,晋中030600

出  处:《中国图象图形学报》

基  金:国家重点研发计划项目(2017YFB1401001).

年  份:2020

卷  号:0

期  号:1

起止页码:113-125

语  种:中文

收录情况:BDHX、BDHX2017、CSCD、CSCD2019_2020、IC、JST、RCCSE、ZGKJHX、核心刊

摘  要:目的如何使快速性与完整性达到平衡是运动目标检测的关键问题。现有的满足快速性的算法容易受到光照的影响,对动态环境的适应能力较弱,获取的目标信息不完整,导致空洞问题的产生。而具有较高完整性的算法复杂度高,运算速度慢,实时性差。为此,本文提出基于自适应混合高斯建模的3帧差分算法。方法利用3帧差分运算简单、可扩展性强、抗干扰能力好的特性,对视频图像进行目标轮廓的提取。针对3帧差分运算导致目标内部信息提取不完整的问题,采用学习率自适应调整的混合高斯背景差分,在模型创建之初,通过较快的模型更新速率,增加背景模型的迭代次数,消除物体运动造成的"鬼影"。在背景模型中的干扰信息消除之后,以目标像素及相邻8像素在当前帧与背景模型中的差异度为依据调整学习率,实现背景模型的自适应修正,增加目标图像的完整性;同时,通过删除冗余的高斯分布,降低算法复杂度。为进一步确保目标边缘的完整及连续,采用边缘对比差分算法,使参与运算的帧数依据目标的运动速度自适应选取,以降低背景点的误判率,使边缘信息尽可能地连续、完整。结果本文算法获取的目标信息完整,且边缘平滑。在提升检测率的同时保证较高的准确率,达到了95.23%,所获目标的完整度提高了28.95%;与传统混合高斯算法相比,时间消耗降低了29.18%,基本达到实时性要求。与基于混合高斯建模的背景差分法(BD-GMM)和基于边缘对比的3帧差分法(TFD-EC)相比,本文算法明显占优。结论实验结果表明,本文算法可以有效抑制动态环境的干扰,降低算法复杂度,既保证实时性,又具有较好的完整性,可广泛应用于智能视频监控、军事应用、工业检测、航空航天等领域。

关 键 词:运动目标检测 3帧差分  边缘对比差分  背景模型  混合高斯建模  自适应学习率

分 类 号:TP391.41]

参考文献:

正在载入数据...

二级参考文献:

正在载入数据...

耦合文献:

正在载入数据...

引证文献:

正在载入数据...

二级引证文献:

正在载入数据...

同被引文献:

正在载入数据...

版权所有©重庆科技学院 重庆维普资讯有限公司 渝B2-20050021-7
 渝公网安备 50019002500408号 违法和不良信息举报中心